

Approach to data collection of the Inland Waterways Activities and experiences in the IWT sector

Friederike Dahlke-Wallat Development Centre for Ship Technology and Transport Systems (DST)

> ETA Conference, Data driven sustainability Brussels, 10th March 2022

MITGLIED Johannes-Rau-DER Forschungsgemeinschaft

Fields of Activity at DST

- Shallow water hydrodynamics
 - Inland vessels,
 - Coaster
 - Seagoing vessels
- Design and construction of inland vessels
- Alternative energy carriers and propulsion systems
- Transportation systems und logistics
- Education (in navigation)
- Flow and wave energy systems

Introduction

Mannheim Declaration from 2018:

- "[...] to develop a roadmap in order to
- reduce greenhouse gas emissions by 35% compared with 2015 by 2035,
- reduce pollutant emissions by at least 35% compared with 2015 by 2035,
- largely eliminate greenhouse gases and other pollutants by 2050. [...]"

IMO-GHG Strategy from 2018:

"[...] reduction in carbon intensity of international shipping (to reduce CO₂ emissions per transport work), as an average across international shipping, "

- by at least 40% by 2030,
- pursuing efforts towards 70% by 2050, compared to 2008
- low sulphur, since 2020 0.5% outside SECA and 0.1% insinde

Introduction

What are the options?

Data collection

Level of detail

Vessel-specific measurements

Technology and Emission modelling

Fleet model with statistics on engine age and size, average fuel consumption

PROMINENT project

- H2020, GA 633929, 05-2015 to 04-2018
- Promoting Innovation in the Inland Waterways Transport Sector
- Fleet statistics from databases

D1.1 List of operational profiles and fleet families

Identification of the fleet, typical fleet families & operational profiles on European inland waterways

	Unregulated (before 2003)	CCNR stage 1 engine (2003-2007)	CCNR stage 2 engine (>2007)	
Passenger vessels	70%	12%	18%	
Other push boats <500 kW	87 %	7%	6%	
Push boats 500-2000 kW	53%	29%	18%	
Push boats >=2000 kW	36%	27%	36%	
Motor vessels dry cargo >=110m	13%	52%	34%	
Motor vessels liquid cargo >=110m	11%	32%	57%	
Motor vessels dry cargo 80-109m	73%	18%	9 %	
Motor vessels liquid cargo 80-109m	44%	19%	37%	
Motor vessels <80m	77%	16%	7%	
Coupled convoys	12%	42%	45%	

Fleet families	Fleet 2015	Fuel con- sumption per FF [t]	Average fuel consumption per year per Ship (in m ³)	Average fuel consumption per year per Ship (in t)	kWh/Year per FF	Unregulated engine (before 2003)	CCNR stage 1 engine	CCNR stage 2 engine
Passenger vessels (large								
hotel)	346	143.590	500	415	652.681.818	1%	14%	85%
Push boats						070/		604
<500 kW						87%	7%	6%
	890	28.480	32	27	107.447.273			
Push boats						E204	2004	1 9 0 4
500-2000 KW	520	82 160	158	131	309 967 273	55%	2.9%	1070
Push boats >2000 kW	520	02.100	150	151	303.307.273	2604	2704	2604
	36	74.520	2.070	1.718	281.143.636	50%	27%	30%
Motorvessel dry cargo						13%	52%	34%
≥110 m	610	206.790	339	281	780.162.273			
Motorvessel liquid cargo						11%	32%	57%
≥110 m	602	206.486	343	285	779.015.364		02/0	
Motorvessel dry cargo								
80-109 m	1 000	204 024	100	124	4 404 349 535	/3%	18%	9%
Materia and British and a	1.802	291.924	162	134	1.101.349.636			
Notorvessel liquid cargo						1406	10%	2706
80-109 m	647	153,339	237	197	578 506 227	4470	15%	5770
Motorvessels < 80 m		100,000			0,0000000	7706	1606	706
	4.463	218.687	49	41	825.046.409	//%	16%	7 %0
Coupled convoys	140	78.120	558	463	294.725.455	12%	42%	45%
Ferries	103	10.187	99	82	38.431.980	77%	16%	7%
Day trip and small hotel						770/	1.001	70/
vessel	2.207	119.178	54	45	449.626.091	//%	16%	/%

Figure 24: Operational Profile for Journey 01 (Pushed Convoy, Rotterdam - Duisburg, Ore)

PROMINENT (T1.1)

- Task of the DST: Determination of the operational profiles for the voyages.
- Approach: Voyage simulation in (if available) temporally and spatially resolved environmental conditions (data for the Rhine provided by BfG, later locally higher resolution models by BAW).
- Challenge: Data acquisition and skipper model

→ What would this look like for a tug?

CCNR Studies

Research Question C

Which greening techniques fit into zero-emission development of IWT and what are the impacts?

- Analysis of the initial situation
- Introduction of energy carriers
- Description of technologies
- Compilation of cost (projections)
- Creation of the baseline scenario (BAU)
- Development of scenarios to achieve the goals
- Quantification of CAPEX, OPEX and TCO

Link to CCNR page on Financing the energy transition DST-Study Edition 1 DST-Study Edition 2 (together with EICB)

Fact sheets on technolgies

Technology Assessment

- Gas and Gas-Electric
- Diesel-Electric
- Aftertreatment
- Fuel Cells
- Battery-Electric
- Drop-In (bio) Fuels
- EuroVI and NRE
- Energy Efficient Navigation

https://www.dst-org.de/en/grendel-3/

•

This fact sheet offers insight into various applications of fuel cells for propulsion and auxiliary power in inland ships. Hydrogen storage options and alternative energy carriers are presented with their pros and cons in brief. Information ranges from relevant regulations, technical concepts including benefits and downsides to recommendations for further reading.

FACT SHEET N° 4

FUEL CELL PROPULSION

Danube Transnational Programme

FACT SHEET FUEL CELL

REGULATIONS

The European committee for drawing up common standards in the field of inland navigation (CESNI) does not consider the installation of field cells in its current regulation for European Standard laying down Technical Requirements for Inland Navigation vessels (ESTRIN-2019/1).

The ESTRUM requires that all electrical installations on bacard must be designed for a constant inclination of 15^{*}. In addition, the energy supply must in principle consist of at least two energy sources. If one energy source fails, the remaining energy source must be able to provide the required energy for at least 30 minutes. This means that either the fuid cells have to be divided into (at least) was systems including the fueling system or a battery with sufficient capacity needs to be implemented.

Classification societies like DNV GL have already guidelines for the installation of fuel cells since 2016. The predecessor Germanischer Lloyd has had regulations for the use of fuel cells since 2002 and they were the first classification society to think about this topic.

FUEL CELL FACTS

Fuel cells are energy converters that continuously convert the chemical energy of the fuel, such as hydrogen. natural gas or methanol, into electrical energy and thermal energy (heat losses) using an oxidant such as oxygen. The fuel cell can supply electricity as long as as untuble fuel is available.

The principle of the fust cell war invented in 1838, however the first commercial use of fast cells came more than a century later in MASA space programs to generate power for satellites and space capsules. Since then, the improvement of the fast cell began and novadays they are used in maxio other applications, e.g. for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. The second most important application for fuel cells is a a power source for whiches of all kinds.

With fuel cells local emission-free power generation is possible. The comparison of a fuel cell with a conventional internal combustion engine shows that no mechanical stress on components takes place because no fuel is burned. This results in no weak, vibration or generation of noise.

TECHNICAL CONCEPT

The electric motor (1) drives the propeller with constraint rpm at any load cases. It advantage is a mearly constant efficiency at all load cases. Depending on the selectrid electric motor a gase box can be omitted. The frequency converter (2) supplies the electric motor with a frequency and volage amplitude variable AC voltage. The converter can be supplied by any AC or DC on board energy end. The rotational second of the electric motor is

controlled by varying the output frequency. The main switch board (3) distributes the energy from all sources to all loads. The loads are frequency converters at the propulsion system. The fuel cell (4) provides the base load. The fuel is created in the tank (5) Peak loads are absorbed by the battery (6) which can be charged either by the fuel cell or via shore power (7).

Page 1

Prognoses for the scenarios

Vessel-Specific measurements (PROMINENT (T5.4))

Vessel	Monika Deymann
ENI	02335636
Loa	134.99 m
В	14.20 m
Т	4.00 m
Load capacity	5558 ton
In service since	2016
Cargo type	Containers
Area of operations	Mainly Antwerp to Mainz
Main engine	2 × Caterpillar 3512 DI-TA ELECTRONIC
Max power main	1119 kW; 1520 hp
engine	
Type of propeller	2 × fixed pitch ducted propellers
Diameter of	1700 mm
propellers	
Measurements by	DST/ BAW
OBM since	02-08-2016

Possible next steps

- Collect existing information
 - Fleet and typical general arrangements (space)
 - Engine age, Emission standards
 - Fuel specification and consumption
 - Engine hours
 - Existing pilot applications
- On-board monitoring
- Assessment of suitable technologies (space, fuel, existing and upcoming regulations etc.)
- Development of strategy for roll-out plan

Friederike Dahlke-Wallat dahlke@dst-org.de +49-203-99369-68